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Introduction. Various boundary value problems for individual types of differential equations in 

partial derivatives and for equations of mixed type of the fourth order have been studied in many 

papers. In [1], questions of the complete classification and reduction to canonical form of fourth-

order linear partial differential equations were studied. Also, correct boundary-value problems for 

hyperbolic and mixed types equations were posed and investigated. Direct and inverse boundary 

value problems for fourth-order equations are studied in [2–8]. In the present work for the equation 
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where    1 2, , ,f x t f x t  are the specified functions. In the   1 2, : 0 , ,x t x p T t T     

area where  0 ,t    0 ,t    the boundary problem is investigated. 

Formulation. Problem A. Find a function  , ,u x t  such that: 

1) is continuous in , together with its derivatives given in the boundary conditions; 

2) is a regular solution of equation (1) in ;    

3) satisfies the boundary conditions: 

     1 20, , 0, ,u t u p t T t T                              (2) 

    10, , 0, 0,xx xxu t u p t T t                              (3)   
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 2, 0, 0 ,u x T x p                                        (4) 

 1, 0, 0 ,u x T x p                                         (5) 

4) satisfies the gluing condition 

   , 0 , 0 , 0 .t tu x u x x p    
      

                      (6) 

 We introduce the notation: 

                  3,0

1 1 1 , 1 2 2 1 1 1 1, : , , 0, , 0, , 0, 0, , 0 ,x t xxxx xx xxW f x t f C f L t T f t f p t f t f p t
            

                  2,0

2 2 2 , 2 2 1 2 2 2 2, : , , ,0 , 0, , 0, 0, , 0 .x t xxx xx xxW f x t f C f L t T f t f p t f t f p t              

             , : , , , , , , ,xx tt xx xxxx tt tV u x t u C u u C u C u u C u C               

conditions are met (2) (6) .   
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 Definition 1. A function    ,u x t V   is called a regular solution of problem A, for, 

   ,f x t C   if it satisfies equation (1) in  .  

Definition 2. A function    2,u x t L 
 

is called a strong solution of problem A for

   2,f x t L  if there is a sequence  , 1,2,...ku k   

regular solutions such that 
 2

0,
L

ku u


   
 2

0
L

kLu f


   for k  . 

We define operator    :L V C   on the set  V  . By virtue of the relation 

     0 2C V L      , the domain of definition    D L V  of the operator L
 
is dense in 

 2 .L   The regular solvability of problem A is equivalent to the solvability of the operator equation 

Lu f  

where L  works by the rule (1),  u V  
 
 

Results and discussion.  

Theorem 1. Let the numbers p and 
2T  such that for 1,2...n   
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then if there is a regular solution to problem A, then it is unique. 

Theorem 2. If        1 1 2 2, , ,f x t W f x t W     and   0 0nN T   for 1,2,...,n   then 

a regular solution of problem A exists and is stable. 

We regularly look for a solution to the problem in the form of a series 

     
1

, ,n n

n

u x t u t X x




                                                (8) 

where  nX x  is determined by system  
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        (9). 

Substituting (8) into equation (1) and decomposing the right-hand sides of this equation into a Fourier 

series in functions  nX x  
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   where      2 2

0

, ,

p

n nf t f x t X x   

come to the following two equations  

      2

1 , 0,n n n nu t u t f t t      

     4

2 , 0.n n n nu t u t f t t      

By solving these equations by the method of variation of arbitrary constants and applying the 

condition 1) of    0 0 ,n nu u   of the problem and (4) - (6), we get 
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where  
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 We introduce the notation 
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By virtue of the introduced notation, (10), (11) can be represented as follows 
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This is a formal solution for the problem A in the field .  

 

Conclusion. 

Lemma 1. If   0 0,nN T   if 1,2...n   then the estimates are true 
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where 
1 2, , 0.C C C const   

Lemma 2. A regular solution of problem A satisfies the estimate 
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                                                                              (20) 

where
3 0C    is a constant number depending only on the size of the domain   and independent 

of the function  , .u x t  

Theorem 3. For any  2f L   strong solution of problem A , there exists uniquely, stably, 

satisfies the estimate (20) and is given by formula  
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