Construct a Massive Dirac Operator with a Number of Eigenvalues in a Continuous Spectrum

Authors

  • Rashidov Sardor G’ulomovich Lecturer at Nukus State Pedagogical Institute
  • Yuldashova Hilola Ataxanovna Lecturer at Nukus State Pedagogical Institute

DOI:

https://doi.org/10.31150/ajshr.v2i6.525

Keywords:

Dirac operator, operator spectrum, discrete spectrum, continuous spectrum, Weil – Titchmarch function, Gelfand-Levitan integral equation, matrix function, Heveside function

Abstract

A massive Dirac operator with a number of eigenvalues is constructed in the continuous spectrum, and sufficient conditions are found for this operator to belong to the space of coefficients. The dependence of the eigenvalues  of the mass Dirac operator on the continuous spectrum on the general boundary conditions is studied. for the following Dirac operator, which is self-contained in the space of vector functions

   

 in the case of

  ,   .

the Weil – Titchmarch function, which satisfies the initial conditions, is defined as a single value.

 The coefficients  of the operator are as follows

 

Found using the Gelfand-Levitan integral equation.

References

Ambartsumyan V.A. Űber eine Frage der Eigenwerttheorie // Zeitschr. fűr physik. - 1929. - Bd. 53. - s. 690-695.

Agranovich Z.S., Marchenko V.A. Obratnaya zadacha teorii rasseyaniya. - Kharkiv: ed. Kharkiv. university, 1960.

Alimov Sh.A. O rabotax A.N.Tixonova on obratnym zadacham dlya uravneniya Shturma – Liuvillya // Uspexi matem. science. –Moscow, 1976. - t. 31, № 6.

Axiezer N.I., Glazman I.M. Theory of linear operators v gilbertovom prostranstve. - M .: «Nauka», 1966.

Buslaev V.C., Fomin V.L. K obratnoy zadache rasseyaniya for odnomernogo uradneniya Shredingera na vsey osi // Vestnik LGU. –1962. – № 1. - S. 56-64.

Borg G. Eine Umkehrung der Sturm-Liouvilleshen Eigenwertaufgabe, Bestimmung der Differentialgleichung durch die Eigenwerte // Acta Math. - 1946.– v. 78, № 2. - p. 1-96.

Gesztesy F., del Rio and Simon B. Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Intl. Math. Research Notices. - 15 (1997). - p. 751-758.

Gasymov M.G., Levitan B.M. Obratnaya zadacha for system Diraka // Dokl. AN USSR. - Moscow, 1966. - t. 167, № 5. - p. 967-970.

Gasymov M.G., Levitan B.M. Definition of the Diraka system by phase rasseyaniya // Dokl. AN USSR. - Moscow, 1966. - t. 167, № 6. –S. 1219-1222.

Gasymov M.G. Obratnaya zadacha teorii rasseyaniya dlya sistemy uravneniy Diraka poryadka // Trudy MMO. –Moscow, 1968. –t. 19. –S. 41-112

Downloads

Published

2021-08-28

How to Cite

G’ulomovich, R. S., & Ataxanovna, Y. H. (2021). Construct a Massive Dirac Operator with a Number of Eigenvalues in a Continuous Spectrum. American Journal of Social and Humanitarian Research, 2(6), 82–92. https://doi.org/10.31150/ajshr.v2i6.525

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.